The Dirichlet and Neumann and Dirichlet-to-neumann Problems in Quadrature, Double Quadrature, and Non-quadrature Domains

نویسنده

  • STEVEN R. BELL
چکیده

We demonstrate that solving the classical problems mentioned in the title on quadrature domains when the given boundary data is rational is as simple as the method of partial fractions. A by-product of our considerations will be a simple proof that the Dirichlet-to-Neumann map on a double quadrature domain sends rational functions on the boundary to rational functions on the boundary. The results extend to more general domains if rational functions are replaced by the class of functions on the boundary that extend meromorphically to the double.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple and Systematic Approach for Implementing Boundary Conditions in the Differential Quadrature Free and Forced Vibration Analysis of Beams and Rectangular Plates

This paper presents a simple and systematic way for imposing boundary conditions in the differential quadrature free and forced vibration analysis of beams and rectangular plates. First, the Dirichlet- and Neumann-type boundary conditions of the beam (or plate) are expressed as differential quadrature analog equations at the grid points on or near the boundaries. Then, similar to CBCGE (direct ...

متن کامل

Interpolation approximations based on Gauss-Lobatto-Legendre-Birkhoff quadrature

We derive in this paper the asymptotic estimates of the nodes and weights of the Gauss-Lobatto-Legendre-Birkhoff (GLLB) quadrature formula, and obtain optimal error estimates for the associated GLLB interpolation in Jacobi weighted Sobolev spaces. We also present a useroriented implementation of the pseudospectral methods based on the GLLB quadrature nodes for Neumann problems. This approach al...

متن کامل

Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.

The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...

متن کامل

Potential evaluation in space-time BIE formulations of 2D wave equation problems

In this paper we examine the computation of the potential generated by space-time BIE representations associated with Dirichlet and Neumann problems for the 2D wave equation. In particular, we consider the efficient evaluation of the (convolution) time integral that appears in the potential representation. For this, we propose two simple quadrature rules which appear more efficient than the cur...

متن کامل

A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions

0096-3003/$ see front matter 2012 Elsevier Inc doi:10.1016/j.amc.2012.01.006 ⇑ Corresponding author. E-mail address: [email protected] (R. Jiwar In this article, we proposed a numerical technique based on polynomial differential quadrature method (PDQM) to find the numerical solutions of two dimensional hyperbolic telegraph equation with Dirichlet and Neumann boundary condition. The PDQM redu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014