The Dirichlet and Neumann and Dirichlet-to-neumann Problems in Quadrature, Double Quadrature, and Non-quadrature Domains
نویسنده
چکیده
We demonstrate that solving the classical problems mentioned in the title on quadrature domains when the given boundary data is rational is as simple as the method of partial fractions. A by-product of our considerations will be a simple proof that the Dirichlet-to-Neumann map on a double quadrature domain sends rational functions on the boundary to rational functions on the boundary. The results extend to more general domains if rational functions are replaced by the class of functions on the boundary that extend meromorphically to the double.
منابع مشابه
A Simple and Systematic Approach for Implementing Boundary Conditions in the Differential Quadrature Free and Forced Vibration Analysis of Beams and Rectangular Plates
This paper presents a simple and systematic way for imposing boundary conditions in the differential quadrature free and forced vibration analysis of beams and rectangular plates. First, the Dirichlet- and Neumann-type boundary conditions of the beam (or plate) are expressed as differential quadrature analog equations at the grid points on or near the boundaries. Then, similar to CBCGE (direct ...
متن کاملInterpolation approximations based on Gauss-Lobatto-Legendre-Birkhoff quadrature
We derive in this paper the asymptotic estimates of the nodes and weights of the Gauss-Lobatto-Legendre-Birkhoff (GLLB) quadrature formula, and obtain optimal error estimates for the associated GLLB interpolation in Jacobi weighted Sobolev spaces. We also present a useroriented implementation of the pseudospectral methods based on the GLLB quadrature nodes for Neumann problems. This approach al...
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملPotential evaluation in space-time BIE formulations of 2D wave equation problems
In this paper we examine the computation of the potential generated by space-time BIE representations associated with Dirichlet and Neumann problems for the 2D wave equation. In particular, we consider the efficient evaluation of the (convolution) time integral that appears in the potential representation. For this, we propose two simple quadrature rules which appear more efficient than the cur...
متن کاملA differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions
0096-3003/$ see front matter 2012 Elsevier Inc doi:10.1016/j.amc.2012.01.006 ⇑ Corresponding author. E-mail address: [email protected] (R. Jiwar In this article, we proposed a numerical technique based on polynomial differential quadrature method (PDQM) to find the numerical solutions of two dimensional hyperbolic telegraph equation with Dirichlet and Neumann boundary condition. The PDQM redu...
متن کامل